STATEMENT

Consider the spring mass dashpot system described by the differential equation (1). Units are in MKS.

\[2 \cdot y''(t) + 4 \cdot y'(t) + k \cdot y(t) = 0, \quad y(0) = 2, \quad y'(0) = 0. \quad (1) \]

a) For what values of \(k \) will the system described in differential equation (1) be underdamped?
b) For each of the values of \(k \) in this range of values in (a) find the time the mass first has a displacement of 0. For each value of \(k \) call this time the first passage time, \(FP(k) \).
c) Plot \(FP(k) \) vs. \(k \) for \(k \in [0, 20] \). What is happening for the value at \(k = 0 \) and \(k < 2 \) in general to this function?
d) For design purposes it may be required to offer up a spring with the lowest \(k \) value, but still have a first passage time of 0.5 s. Find the \(k \) for which \(FP(k) = 0.5 \).

Now consider the spring mass dashpot system described by the differential equation (2)

\[2 \cdot y''(t) + c \cdot y'(t) + 9.4 \cdot y(t) = 0, \quad y(0) = 2, \quad y'(0) = 0. \quad (2) \]

e) For what values of \(c \) will the system described in (2) be underdamped?
f) For each of the values of \(c \) in this range of values in (e) find the time the mass first has a displacement of 0. For each value of \(c \) call this first passage time, \(FP(c) \). What is happening for the value of \(c = 0 \) to this function?
g) Plot \(FP(c) \) vs. \(c \) for \(c \in [0, 9] \).
h) For design purposes it may be required to offer up a spring with the lowest \(c \) value but still have a first passage time of 0.5 s. Find the \(c \) for which \(FP(c) = 2 \).
Here is a rather interesting result that seems to imply initial position has nothing to do with first passage time when all other values m, c, k, and v_0 are fixed!

i) For the motion described by (2) show that for a given value of c no matter what initial position y_0 given the first passage time $FP(c)$ is ALWAYS the same.

j) Also show the same is true in the case of the motion described by (2), i.e. for a given value of k no matter what initial position y_0 given the first passage time $FP(k)$ is ALWAYS the same.

Here are further considerations.

k) Incidentally, (i) does not apply to initial velocity, i.e. the first passage time does vary as we change $y'(0) = v_0$ if every other parameter stays fixed. Prove this result.

l) Neither does (j) hold true for mass m, i.e. the first passage time does vary as we change m if every other parameter stays fixed. Prove this result.