26 January 2021

SIMIODE is proud to announce a Preview Version of its forthcoming online text, *Differential Equations: A Toolbox For Modeling The World*.

Developed and written by the distinguished teacher and author, Dr. Kurt Bryan, Rose-Hulman Institute of Technology, Terre Haute IN USA, this text takes a modeling first and throughout approach to motivate the study and learning of differential equations in the spirit of SIMIODE, while linking to many SIMIODE Modeling Scenarios and other activities.

The text will be available in its Preview Version in January 2021 and will be freely offered immediately to those who register for **SIMIODE EXPO 2021**, 12-13 February 2021, which includes a chance to meet the author in a Panel Session during the conference.

Faculty who view this Preview Version will have an opportunity to adopt this online text for their students for Fall 2021 use in their teaching for a very modest cost per student, of $45 per copy. We seek comments and feedback on the text at any time. Send them along to **Director@simiode.org**.

Revisions, additional worked exercises, appendices, and some new material will be added with the complete text available for adoption c. 15 May 2021.

Differential Equations: A Toolbox For Modeling The World puts applications and modeling front and center in an introduction to ordinary differential equations. In taking this approach we do not skimp on or skip over the mathematics but use applications to motivate almost every subject and technique. The mathematics presented is interwoven with modeling to drive both the mathematics and understanding of the application under study and to make the case that differential equations provide a powerful, indispensable toolbox for describing the world.

We present some unconventional, but important topics not usually offered in introductory texts: dimensional analysis, parameter estimation, a brief introduction to control theory via Laplace transforms, stiff systems of differential equations, and a more thorough treatment of electrical circuits. The text includes numerous exercises, including inline ``Reading Exercises,” as well as a section of more extensive modeling projects at the end of each chapter, many based on published SIMIODE projects, and many new activities. Several projects include data sets for experimentation and model validation.

We offer details and a walkthrough of the [Table of Contents here](#).
Table of Contents

1 Why Differential Equations?
 1.1 The 2008 Olympic 100 Meter Dash
 1.1.1 Usain Bolt’s Olympic Victory
 1.1.2 Modeling A Sprint
 1.1.3 The Hill-Keller Differential Equation
 1.2 Intracochlear Drug Delivery
 1.2.1 The Challenge of Hearing Loss
 1.2.2 A Compartmental Model for the Cochlea
 1.2.3 The Differential Equation
 1.3 Population Growth and Fishery Management
 1.3.1 The Need to Manage Fish Harvesting
 1.3.2 Modeling Fish Population
 1.3.3 Modeling Harvesting
 1.3.4 Parameter Estimation and Harvesting
 1.4 Where Do We Go from Here?
 1.4.1 A Toolbox for Describing the World
 1.4.2 Some Terminology
 1.5 You Already Know How to Solve Some Differential Equations
 1.5.1 Exercises
 1.6 The Blessing of Dimensionality
 1.6.1 Definition of Dimension
 1.6.2 The Algebra of Dimension
 1.6.3 Derivatives, Integrals, Elementary Functions
 1.6.4 Unit Free Equations and Bending the Rules
 1.6.5 Using Dimension to Find Plausible Models
 1.6.6 Other Dimensions
 1.6.7 Exercises
 1.7 Modeling Projects
 1.7.1 Project: Hang Time
 1.7.2 Project: Money Matters
 1.7.3 Project: Ant Tunneling

2 Analysis of First Order Scalar ODE’s
 2.1 Two Basic Solution Techniques
 2.1.1 Linear Equations
 2.1.2 Separable Equations
 2.1.3 Some Other Common First Order Models We Can Solve
 2.1.4 Exercises
 2.2 Qualitative and Graphical Insights
 2.2.1 Direction Fields
 2.2.2 Autonomous Equations
 2.2.3 Phase Portraits
 2.2.4 Determining the Stability of Fixed Points
 2.2.5 Bifurcations
 2.2.6 Exercises
 2.3 The Existence and Uniqueness of Solutions
 2.3.1 Some Inspiration
 2.3.2 What Are Solutions to ODE’s?
 2.3.3 The Existence-Uniqueness Theorem for ODE’s
 2.3.4 Exercises
2.4 Modeling Projects
 2.4.1 Project: Money Matters
 2.4.2 Project: Chemical Kinetics
 2.4.3 Project: A Shot in the Water

3 Numerical Methods for ODE’s and Parameter Estimation
3.1 Euler’s Method
 3.1.1 The Need for Numerics
 3.1.2 Evaluate, Extrapolate, Repeat as Necessary
 3.1.3 Exercises
3.2 Improvements to Euler’s Method
 3.2.1 Improving Euler’s Method
 3.2.2 The Improved Euler’s Method
 3.2.3 Exercises
3.3 The RK4 Method, Adaptive Step Sizing, and Modern Numerical ODE Solvers
 3.3.1 The RK4 Algorithm
 3.3.2 Adaptive Step Sizing
 3.3.3 Exercises
3.4 Parameter Estimation
 3.4.1 Hill-Keller Revisited
 3.4.2 Least-Squares Estimation
 3.4.3 Hill-Keller Again
 3.4.4 Least Squares for ODE Parameter Estimation
 3.4.5 A Cautionary Example
 3.4.6 Exercises
3.5 Modeling Projects
 3.5.1 Project: Sublimation of Carbon Dioxide
 3.5.2 Project: Fish Harvesting Revisited
 3.5.3 Project: Mathematics of Marriage
 3.5.4 Further Explorations for Parameter Estimation

4 Second Order Ordinary Differential Equations
4.1 Vibration and the Harmonic Oscillator
 4.1.1 The 2010 Chilean Earthquake
 4.1.2 The Harmonic Oscillator
 4.1.3 Initial Conditions
 4.1.4 More Applications of Spring-Mass Models
 4.1.5 Exercises
4.2 The Homogeneous Harmonic Oscillator
 4.2.1 Solving the Harmonic Oscillator ODE: Examples
 4.2.2 Solving Second Order Linear ODE’s: The General Case
 4.2.3 The Underdamped and Undamped Cases
 4.2.4 The General Underdamped Case
 4.2.5 The Critically Damped Case
 4.2.6 The Existence and Uniqueness of Solutions
 4.2.7 Summary and a Physical Perspective
 4.2.8 Exercises
4.3 The Forced Harmonic Oscillator
 4.3.1 Solving the Forced Harmonic Oscillator Equation
 4.3.2 Finding a Particular Solution: Undetermined Coefficients
 4.3.3 When the Guess Fails
 4.3.4 Exercises
4.4 Resonance
 4.4.1 An Example of Resonance
 4.4.2 Periodic Forcing
 4.4.3 Exercises
4.5 Scaling and Nondimensionalization for ODE’s
 4.5.1 Some Motivation: Nonlinear Springs
 4.5.2 Characteristic Variable Scales
 4.5.3 Rescaling Variables and Nondimensionalizing an ODE
 4.5.4 The General Outline for Nondimensional Rescaling
 4.5.5 Back to the Hard Spring
 4.5.6 Exercises
4.6 Modeling Projects
 4.6.1 Project: Earthquake Modeling
 4.6.2 Project: Stayed Tuned—RLC Circuits and Radio Tuning
 4.6.3 Project: Parameter Estimation with Second Order ODE’s
 4.6.4 Project: Bike Shock Absorber
 4.6.5 Project: The Pendulum
 4.6.6 Project: The Pendulum 2

5 The Laplace Transform
5.1 Discontinuous Forcing Functions
 5.1.1 Motivation: Pharmacokinetics
 5.1.2 Complication: Discontinuous Forcing
 5.1.3 Complication: Impulsive Forcing
 5.1.4 Discontinuous Forcing and Transform Methods
 5.1.5 Exercises
5.2 The Laplace Transform
 5.2.1 Definition of the Laplace Transform
 5.2.2 Laplace Transforms of Elementary Functions
 5.2.3 Solving Differential Equations with Laplace Transforms
 5.2.4 The First Shifting Theorem
 5.2.5 The Inverse Laplace Transform
 5.2.6 The Initial and Final Value Theorems
 5.2.7 Section Summary and Remarks
 5.2.8 Exercises
5.3 Nonhomogeneous Problems and General Forcing Functions
 5.3.1 Some Simple Nonhomogeneous Examples
 5.3.2 Discontinuous Forcing
 5.3.3 Laplace Transforming H(t-c)
 5.3.4 The Second Shifting Theorem
 5.3.5 Some More Examples
 5.3.6 Summary and Remarks
 5.3.7 Exercises
5.4 The Dirac Delta Function
 5.4.1 Motivational Examples
 5.4.2 Definition of The Dirac Delta “Function”
 5.4.3 Three Models
 5.4.4 The Laplace Transform of the Dirac Delta Function
 5.4.5 Solving ODE’s with Dirac Delta Functions
 5.4.6 Summary and a Few Remarks
 5.4.7 Laplace Transform Table
 5.4.8 Exercises
5.5 Input-Output, Transfer Functions, and Convolution
 5.5.1 A System Identification Problem
 5.5.2 Input-Output Systems
 5.5.3 Convolution
 5.5.4 The Impulse Response of a System
 5.5.5 Using Transfer Functions and Impulse Responses
 5.5.6 Application: System Identification
 5.5.7 Exercises

5.6 A Taste of Control Theory
 5.6.1 The Need for Control
 5.6.2 Modeling an Incubator
 5.6.3 Open Loop Control
 5.6.4 Closed-Loop Control
 5.6.5 Proportional-Integral Control
 5.6.6 Proportional-Integral-Derivative Control
 5.6.7 Summary and Comments
 5.6.8 Exercises

5.7 Modeling Projects
 5.7.1 Project: Drug Dosage
 5.7.2 Project: Machine Replacement
 5.7.3 Project: Vibration Table Shakedown
 5.7.4 Project: The Inverted Pendulum

6 Linear Systems of Differential Equations
6.1 Systems of Differential Equations
 6.1.1 Motivation: Pharmacokinetics
 6.1.2 Existence and Uniqueness
 6.1.3 Exercises

6.2 Linear Constant Coefficient Systems of Differential Equations
 6.2.1 Matrix-Vector Formulation
 6.2.2 The Homogeneous Case
 6.2.3 Complex Eigenvalues
 6.2.4 Defective Matrices
 6.2.5 The Nonhomogeneous Equation $x' = Ax + f$.
 6.2.6 The Significance of Eigenvalues
 6.2.7 Exercises

6.3 The Matrix Exponential
 6.3.1 Inspiration
 6.3.2 Definition of the Matrix Exponential
 6.3.3 Properties of the Matrix Exponential
 6.3.4 The Matrix e^A
 6.3.5 Solving ODE’s with the Matrix Exponential
 6.3.6 Computing the Matrix Exponential
 6.3.7 Final Remarks
 6.3.8 Exercises

6.4 Modeling Projects
 6.4.1 Project: LSD Compartment Model
 6.4.2 Project: Homelessness
 6.4.3 Project: Tuned Mass Dampers
7 Nonlinear Systems of Differential Equations

7.1 Autonomous Nonlinear Systems and Direction Fields
 7.1.1 Some Nonlinear ODE Models
 7.1.2 Direction Fields
 7.1.3 A Nonlinear Direction Field Example
 7.1.4 Direction Fields in Higher Dimensions
 7.1.5 Exercises

7.2 Direction Fields and Phase Portraits for Linear Systems
 7.2.1 Direction Fields for Homogeneous Linear Systems
 7.2.2 An Application
 7.2.3 Direction Fields for Larger Systems of ODE’s
 7.2.4 Exercises

7.3 Autonomous Nonlinear Systems and Phase Portraits
 7.3.1 The Struggle for Existence Continues
 7.3.2 Changing the Parameters
 7.3.3 Sketching Phase Portraits with Unspecified Parameters
 7.3.4 Linearization
 7.3.5 Linearizing at Equilibrium Points
 7.3.6 Linearizing the Competing Species Model with General Parameters
 7.3.7 Exercises

7.4 Numerics for Systems of First Order ODE’s

7.5 Bifurcations and Chaos

7.6 Modeling Projects
 7.6.1 Project: Homelessness Revisited
 7.6.2 Project: Predator-Prey Model
 7.6.3 Project: Parameter Estimation for Competing Species

A Appendix Complex Arithmetic
B Appendix Matrix Algebra Review
C Appendix Circuits

Bibliography

Index