Existence Theorems and their Applications

By

Muhammad Nazam

Department of Mathematics,
Allama Iqbal Open University, H-8 Islamabad, Pakistan.
Email: muhammad.nazam@aiou.edu.pk

https://scholar.google.com/citations?user=aAHRdw0AAAAJ&hl=en&oi=ao

February 13, 2021
Existence Theorems

• A theorem stating the existence of an object, such as the solution to a problem or equation.

• Generally, the existence theorems are of three types:

• (Type 1). Existence theorems that give explicit formulas for solutions, for example:

 Cramer’s Rule:

• Cramer's Rule (studied in linear algebra) is a method that uses determinants to solve systems of equations that have the same number of equations as variables.) It gives a condition for existence of the unique solution to system of linear equations as well as formulas to find this solution.

• Introduction to Line Analysis Algebraic Curves (English)
Existence Theorems

Wronskian: \[W[f, g] = \begin{vmatrix} f & g \\ f' & g' \end{vmatrix} \]

The second order differential equations of the type:

\[\frac{d^2y}{dx^2} + P(x) \frac{dy}{dx} + Q(x)y = f(x) \quad \ldots (1) \]

where \(P(x), Q(x) \) and \(f(x) \) are functions of \(x \). The variation of parameters method states that:

If \(W[f, g] \neq 0 \), then (1) has exactly two linearly independent solutions. These solutions can be worked out by using Cramer’s Rule.

Existence Theorems

(Type 2). *The theorems which only state the condition(s) for the existence of the objects, for example:*

Bolzano-Weierstrass Theorem:

Version 1. Every bounded sequence of real numbers has a convergent subsequence

Version 2. Every bounded, infinite set of real numbers has a limit point

Existence Theorems

Intermediate Value Theorem

It states that if the real valued function f is continuous on $[a, b]$ and $f(a) < y < f(b)$. Then there exists $a < c < b$ such that

$$y = f(c).$$

[1] O’Connor, John J.; Robertson, Edmund F., "Intermediate value theorem", MacTutor History of Mathematics archive, University of St Andrews
Existence Theorems

Extreme Value Theorem

The extreme value theorem states that if a real-valued function f is continuous on the closed interval $[a, b]$, then f must attain a maximum and a minimum value, each at least once.

Existence Theorems

Mean Value Theorem

It states that:

If the real-valued function \(f: [a, b] \rightarrow \mathbb{R} \) is differentiable over \((a, b)\) and continuous at \(x = a \), and \(x = b \). Then there exists a number \(c \in (a, b) \) such that \(f'(c) \) is equal to the function's average rate of change over the interval, that is

\[
\frac{f(b) - f(a)}{b - a} = f'(c).
\]

Graphically, the theorem guarantees that an arc between two endpoints has a point at which the tangent to the arc is parallel to the secant through its endpoints.
Existence Theorems
Existence Theorems

How do you prove positive derivative means increasing function: with the MVT.

How do you prove derivative 0 on an interval means constant function: with the MVT.

It is the first result which gives an explicit relation between values of f and f'.

Curve Sketching, the Fundamental Theorem, Taylor Series, and even Hospital's rules, they all are refined versions of repeated applications of the MVT plus special conditions.

Existence Theorems

Roll’s theorem is a special case of mean value theorem. It states that when \(f(a) = f(b) \) then there exists a number \(c \in (a, b) \) such that \(f'(c) = 0 \).

Peano existence theorem is a fundamental theorem which describe the condition for the existence of the solution to ordinary differential equation with some initial conditions. It states that the differential equations:

\[
y'(x) = f(x, y(x)); \quad y(x_0) = y_0
\]

has a unique solution if \(f \) is continuous.

Existence Theorems

(Type 3) Existence theorems whose proofs involve iteration processes.

Lipschitz continuity

A function $f: \mathbb{R} \to \mathbb{R}$ is called Lipschitz continuous if there exists a positive real constant $k \geq 0$ such that

$$|f(x) - f(y)| \leq k|x - y| \quad \forall x, y \in X.$$

The Picard-Lindelöf theorem, Picard's existence theorem, Cauchy-Lipschitz theorem, or existence and uniqueness theorem gives a set of conditions under which an initial value problem has a unique solution.

Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem.

Existence Theorems

A special type of Lipschitz continuity, called *contraction* is used in the *Banach fixed-point theorem* (an existence theorem). It states that:

Let \((X,d)\) *be a complete metric space and* \(T:X \rightarrow X\) *satisfies*

\[
d(Tx,Ty) \leq K \ d(x,y); \ 0 \leq K < 1.
\]

Then \(T\) *has unique fixed point in* \(X\).

It is the fundamental existence theorem in the metric fixed-point theory. It appears to be a powerful tool for the existence of the solutions of mathematical models involving differential equations and others representing real world phenomena.

Thank You